Fully automated Arabic to English machine translation system: transfer-based approach of AE-TBMT
نویسندگان
چکیده
Arabic Machine Translation (MT) has been widely studied recently. Any Arabic to English Machine Translation (MT) system should be capable of dealing with word order and agreement requirements, agreement rules are crucial for the generation of sentences in the target language. They also serve as rules for the ordering of sentence constituents. Transfer-based technique is currently one of the most widely used methods of machine translation. The idea behind this method is to have an intermediate representation that captures the meaning of the original sentence in order to generate the correct translation. In this paper we have explored several features of Arabic pertinent to MT. The hypothesis under investigation and main aims of this paper are to build a robust lexical Machine Translation (MT) system that will accept Arabic source sentences (SL) and generate English sentences as a target language (TL), and to examine how the challenges imposed by this particular language pair are tackled. The paper represents as well a starting point for the future implementation of a successful Arabic MT engine. The conducted experiment proves that our system (AE-TBMT) has scored the highest percentage by 96.6 percent, this means that only three percent of the entire test examples have not been handled correctly, and this result is considered fair if not good, as the other three systems score below that mark.
منابع مشابه
Syntactic Reordering for Arabic- English Phrase-Based Machine Translation
performing translation task which converts text or speech in one Natural Language (Source Language (SL)) into another Natural Language (Target Language (TL)). The translation from Arabic to English is difficult task due to the Arabic languages are highly inflectional, rich morphology and relatively free word order. Word ordering plays an important part in the translation process. The paper prop...
متن کاملAn English-Arabic Bi-directional Machine Translation Tool in the Agriculture Domain - A Rule-Based Transfer Approach for Translating Expert Systems
The present work reports our attempt in developing an EnglishArabic bi-directional Machine Translation (MT) tool in the agriculture domain. It aims to achieve automated translation of expert systems. In particular, we describe the translation of knowledge base, including, prompts, responses, explanation text, and advices. In the central laboratory for agricultural expert systems, this tool is f...
متن کاملMachine Translation of Noun Phrases from Arabic to English Using Transfer-Based Approach
Problem statement: Any Arabic to English Machine Translation (MT) system should be capable of dealing with word order which Arabic exhibits. This poses a significant challenge to MT due to the vast number of ways to express the same sentence in Arabic. The ordering features are very important and should be carefully applied to ensure the generation of sentence in the target language. Because th...
متن کاملAutomatic Rule Induction in Arabic to English Machine Translation Framework
This chapter addresses the exploitation of a supervised machine learning technique to automatically induce Arabic-to-English transfer rules from chunks of parallel aligned linguistic resources. The induced structural transfer rules encode the linguistic translation knowledge for converting an Arabic syntactic structure into a target English syntactic structure. These rules are going to be an in...
متن کاملCzech-English Dependency Tree-based Machine Translation
We present some preliminary results of a Czech-English translation system based on dependency trees. The fully automated process includes: morphological tagging, analytical and tectogrammatical parsing of Czech, tectogrammatical transfer based on lexical substitution using word-to-word translation dictionaries enhanced by the information from the English-Czech parallel corpus of WSJ, and a simp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJICT
دوره 10 شماره
صفحات -
تاریخ انتشار 2017